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Calculus 3c-2 Introduction

Introduction

Here follows a collection of examples of general, elementary series. The reader is also referred to
Calculus 3b. The main subject is Power series; but first we must consider series in general. We shall
in Calculus 3c-3 return to the power series.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.
I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
14th May 2008
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Calculus 3c-2 Partial sums and telescopic series

1 Partial sums and telescopic series

Example 1.1 Prove that the series

i 11
— n+4 n-+6

is convergent and find its sum.

We shall in this chapter only use the definition of the convergence as the limit of the partial sums of
the series. In this particular case we have

N/ 1
v = 3 (- wre)
B 1 1 1 1 1 1 1 1
- {3?}*{65}*{?5}*“'*{@@}

1 1 1 1
+{N+3_N+5}+{N+4_N+6}'

The sum is finite, and we see that all except four terms disappear, so

1,1 1 1 LS SRS | R
sN=~-+~--———-—————>-+--0-0= - for N — oo.
N=5"6 N+5 N+6 5 ' 6 30

It follows by the definition that the series is convergent and its sum is

i —1 — ! = lim s *1—1
n+4d n+6) Noowo N30

n=1

Remark 1.1 Since

N 1 N+41 N 1 N+61
nz::ln+4:n§::55 and ;n+6:;ﬁ

(finite sums with the same terms; check!), we get more well-arranged (the sum can be split, because
it is finite)

N Moo 1 1
VT ;n+4_;n+6:n:5ﬁ_n:7ﬁ
_ {1+1+N*41}_{N*“1+;+;}
5 6 =n =n N+5 N+6
L I N e e,
56 N+5 N+6 56 30

etc.
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Calculus 3c-2 Partial sums and telescopic series

Example 1.2 Prove that the given series is convergent and find its sum

oo

1
Z 2n—1)2n+1)

n=1

Since we have a rational function in e.g. x = 2n, we start by decomposing the term

1 1 1 1 1

2n—1)(2n+1) 22n—1 22n+1

Then calculate the N-th partial sum

N 1 1% 1 1% 1
SN = -— = - _ =
—(2n-1)2n+1) 24 =2n-1 2“4 2n+1
1 1 1L 1 11 1
- 5,;Qnﬂfig%ﬂ:5*5'2N+1'

Since the sequence of partial sums is convergent,

1 1
— for N — oo,

11
SN=-—z " —
N79 7 9'aN11 2

the series is convergent and its sum is

. 1
= lim sy = —.
N—oo 2

G 1
n; (2n—1)2n+1)

Today’s job market values ambitious, innovative, perceptive team players. Swedish
universities foster these qualities through a forward-thinking culture where you’re
close to the latest ideas and global trends.
Whatever your career goals may be, studying in Sweden will give you valuable
Swedish Institute ~~ skills and a competitive advantage for your future. www.studyinsweden.se
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Calculus 3c-2 Partial sums and telescopic series

Example 1.3 Prove that the given series is convergent and find its sum,

oo

1
Zn2_1'

n=2

We get by a decomposition,

1 1 11 11
n2—1 (n—-1)mn+1) 2 n-1 2 n+1

Se sequence of partial sums is then

N N
1 1 1 1 1
nz—liingzn—liign—l—l

|
M=

SN =
n=2
(N=1 N
= 3 -5 - (the same insides, check the first and the last terms)
n n
n=1 n=3
N-1 N-1
1 1 1 1 1 1 1 1
= {§+Z+§;ﬁ}_§{7§ﬁ+ﬁ+1\f—+l} (remove some terms)
3 1 1 1 1
= 173 N 2 N+l (cancel the two identical sums)
3
= 3 for N — oc.

It follows by the definition that the series is convergent and its sum is

oo

)
n?—1 Ny

N—o0
n=2

Example 1.4 Prove that the given series is convergent and find its sum

Vntl—yn
= Vn?’+n )

This is a nontypical case, though one may still copy the method of decomposition. since

vVnZ4+n=+vn+1-yn,

it follows by a division that

Vnti-yn VaFli-yn 1 1

ViEin  Vatlyn Vi Vil

Then calculate the sequence of partial sums,

b A s

" n=1 n2+n n=1 n n=1 n+1
B XN: 1= L 1
=V =V VT UN+T N+1
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Calculus 3c-2

Partial sums and telescopic series

Since the sequence of partial sums is convergent

1
sSN=1————1 for N — o0,
N +1

the series is also convergent and its sum is

oo Vs 1_
Zu: lim sy =1.
ot ‘/n2+n N—oo

Remark 1.2 We see from the expression of the sequence of partial sums that the convergence is very

slow, so it is not a good idea here to use a pocket calculator.

Example 1.5 . Prove that the given series is convergent and find its sum,
S 2n+1
We first decompose,

2n+1 (n>+2n+1)—-n? 1 1

n2(n+1)2 n?(n+1)2 T2 (n+1)?%

This gives us the sequence of partial sums
N N N

2n+1 1 1 1 1

SN = an(n+1)2_2ﬁ_ (n+1)2_2ﬁ_ n2

n=1

=

Il
—
_|_

S
1=
SM|H
—
I

3
1=
§m|’—‘
_|_

=
—+ | =
!
e
—

= 1—-—-—1 for N — oo.

It follows by the definition that the series is convergent and its sum is
o0
2 1
S~ i sy =1

—n?(n+1)?  Nooo

Example 1.6 Prove that the given series is convergent and find its sum,
i 3n +4
—nm+1)(n+2)

We get by a decomposition that
3n+4 2 1 1

nn+1)(n+2) n n+l n+2
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Calculus 3c-2 Partial sums and telescopic series

The sequence og partial sums becomes

N N N N
3n+4 1 1 1
— T E 9 - _
N n;n(n—l-l)(n—&—Q) n;n n;n—i—l ;n—&—Q
N N41 N+2
1 1 1
= 22—7 - — — (same insides)
n n n
n=1 n=2 n=3
N N+1 N N+2 N N N
1 1 1 1 . 1 1 1
= {Zg‘Z;}ﬂ‘{ 5—25} (bywrltlng22522g+25>
n=1 n=2 n=1 n=3 n=1 n=1 n=1
N N N N
1 1 1 1 1 1 1 1
= {1 N - 1+ = N - -
{—i—gn nz:;n N+1}+{ +2+;n —=n N+1 N+2}
_ 1 3 1 1
N N+1 2 N+1 N+H2
5 2 1

5
R A S e A
29 N+1 N+2 2 987

It follows by the definition that the series converges towards the sum
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Calculus 3c-2

Partial sums and telescopic series

Example 1.7 Prove that the given series is convergent and find its sum,

o0

Z 2n + TL2 + n
2ntin(n +1)

n=1

By using a decomposition like method we get

2"+n*+n 1 LS SRR O S S S
2ntln(n4+1) 2 n(n+1) 20+1 2pn  2np41  2nFl]
The sequence of partial sums is
N N N N
2" +n2+4+n 1 11 1 1
WS D ) 22n 22 na1 T 2
S SE TR o S YUT
B no 2 no 2 2

1
2
N N
1 1 1 1 1 1 1 1 1
- {5*525}{§Z;+5w—+1}+§w
1 1
2

By the definition, the series is convergent and its sum is

(oo}

—_— = m s = 1.
2”+1n(n + 1) N—o0 N

n=1

Example 1.8 Check if the given series is convergent or divergent,
i 2+ (—1)"
2n '
n=1

First estimate each term,

24 (=17
0<an:%

IN

3
— =b,.
2n

Then the larger series

bn=3§:2in=3,
1 n=1

8

(a quotien series),

n

—— — 1 for N — oo.

is convergent, so it follows from the criterion of comparison that the smaller series

- 2+ (=1)n
Ay = —_—

is also convergent.
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Calculus 3c-2 Partial sums and telescopic series

Remark 1.3 We can in this case even find the sum. which will give us an alternative proof. The
sequence of partial sums is

o= XT3 (1)

(quotient series)

for N — oo.

Il
[\]
|
S
|
| =
|
[
/T\
| =
N————
2
+
=
|

It follows that the series converges towards the sum

— 2+ (-D)" 5
ZT—A}IHI SN—g.

— 00

n=1
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Calculus 3c-2 Simple convergence criteria for series

2 Simple convergence criteria for series

Example 2.1 Check if the given series is convergent or divergent,

Criterion of comparison. Since

1 1
n(n—1) <+vn-n=n, wehave ———>—.
nn—1) n

Therefore, if we put a,, = 1/y/n(n — 1) and b,, = 1/n, we get

Since the smaller series is divergent (the harmonic series is divergent), the larger series is also, thus

is divergent.

- 1
7;2 v/n(n—1)
Criterion of equivalence. Putting as above

1 1
ap,=—— and b, =—, n> 2,
n(n—1 n

we see that both a,, > 0 and b, > 0. Since

b \/ -1) -1 1
no_ n(n " \/1———>1 for n — oo,
n

an

the series > a, and Y b, are equivalent. Since the harmonic series is divergent, it follows that

o0 o0 1

b, = — is di .
Z n Z - is divergent
n=2 n=2

By the criterion of equivalence,

is divergent.

o0 o0 1
2 =2 e
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Calculus 3c-2 Simple convergence criteria for series

Example 2.2 Check if the given series is convergent or divergent,

=1
Z 1+Inn’
n=1

It follows either by the magnitudes or by a graphical consideration that

0<l+Inn<n for every n € N.

Hence,

5]
X
5 ! 15 2 25 3
0
—24
—4
1 1
ap=——"——2>—=">0
" 14lnn " n m
and thus

o) [eS)
Z ay, > Z by,.
n=1 n=1

Since the smaller series Y b, is divergent (the harmonic series), the larger series Y a, is by the
criterion of comparison also divergent.

We have proved that

oo
Z ; is divergent
— 1+1nn gent-

Download free books at BookBooN.com
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Calculus 3c-2 Simple convergence criteria for series

Example 2.3 Check if the given series is convergent or divergent,
>0 2
Z ne " .
n=1

Criterion of comparison. By putting a,, = ne=™ > 0, and e.g. b, = 1/n?, it is seen that

2 1

1
0<a,=n-e" :—2~n367”2<—2:bn forn > N (in fact for n € N),
n n

since the magnitudes assure that at n? - e — 0 for n — oo.

Since the larger series >_ b, = >_n~2 is convergent, it follows by the criterion of comparison that

o0
— 2 .
E an = E ne " is konvergent.

Remark 2.1 Another choice of b, could be b, = =" or b, = exp(—n?/2). In both cases we also
prove the convergence.

Criterion of quotients. If we put a,, = nexp(—n?) > 0, it follows that

" 1 — 1)2 1
an+1 — (n + )exp( (T; + ) ) — <1 4 _) 6—277.—1 —~0<1 forn— 00,
an, nexp(—n?) n

and the convergence follows by the criterion of quotients.
Criterion of roots. If we put a,, = nexp(—n?) > 0, it follows that
Va, =Vn-e"—1-0=0<1 for n — oo,

and the convergence follows by the criterion of roots.

Example 2.4 Check if the given series is convergent or divergent,
o0

1
Y i

n=1

Criterion of equivalence. If we put

1 1
an:m>0 og bn:ﬁ, fornEN,
it follows that
2n? — 1 1
b”: " \/T_lzl————>1 for n — oo,

an 2n? 2 ny/n
thus (a,,) and (b,,) are equivalent sequences. Since

(oo} oo

1 1 )
; b, = 3 Z - is convergent,

n=1

Download free books at BookBooN.com

15



Please click the advert

Calculus 3c-2

Simple convergence criteria for series

the criterion of equivalence shows that

oo

1
Z — is konvergent.
2n? —\/n

n=1

Criterion of comparison. Since /n < n < n? for n € N, we have
2 2 2 2
2n* —/n>2n° —n? =n?,

thus
1 1
2n? —\/n

The larger series >_ b, = >_1/n? is convergent, hence the smaller series

0<a,= = by, n € N.

n2

> 1
Z m is also convergent.

n=1
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Calculus 3c-2

Simple convergence criteria for series

Example 2.5 Check if the given series is convergent or divergent,

oo

1
;n—i—\/ﬁ'

Criterion of equivalence. Put

>0 and bn:l>0.
n

— = =1+——1 for n — oo,

an n vn

so (ay) and (b,) are equivalent. The harmonic series

Z n = Z — is divergent,
n=1 n= 1

so we conclude by the criterion of equivalence that

Z a, = Z — \/_ is also divergent.

Criterion of comparison. Since \/n < n for n € N, we have n + /n < 2n, so

1 1 b
ay = — =b,.
Since the harmonic series is divergent, the smaller series
(o9} [e.e]
1 N
Z Z is divergent.

n
n=1

By the criterion of comparison, the larger series

L

is divergent.

ﬁMéa

17
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Calculus 3c-2 Simple convergence criteria for series

Example 2.6 Check if the series

>

is convergent or divergent.

n 2n2

Since

1
\/2n2+1:m/2+—2>n
n

it follows by the criterion of comparison that

o0 o0
1
0< — < 00
Z n\/2n27 ; ; 2 )
so the series is convergent.

We can also apply the criterion of equivalence, but it will only be a variant of the above.

Remark 2.2 Since a,, = 1/(nv2n? + 1) approximately behaves like a fractional rational function,
we cannot use the criteria of quotients or roots:

A1
Ya, — 1, and i SN 1, for n — oo.

an,

Example 2.7 Check if the given series is convergent or divergent,
i n+2
— (n+1)vn+3
Criterion of equivalence. Put

2
:L>O

fin (n+1)vn+3

By counting the degrees we see that it would be reasonable to compare with b,, = 1/4/n. Since
b, (m+1)vn+3 n+1 /n+3 1 3
no_ = =(1—- — 1+ ——1 forn— oo,
an (n+2)v/n n+2 n n+2 n
it follows that (a,) and (b,,) are equivalent. Then compare b, = 1/y/n and ¢, = 1/n. We see that

1
\/ﬁ

1
b, = > — =cy.
n

1
The harmonic series is divergent, so > ¢, = > — is divergent. The larger series Y b,, is also divergent,
n

so according to the criterion of equivalence

n+2 .
ay, = - is divergent.
Z Z (n+1)v/nt3 s

Download free books at BookBooN.com
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Calculus 3c-2 Simple convergence criteria for series

Remark 2.3 The above is rather difficult. It will later be proved that > n~% is divergent, when

« < 1. This is true here, where a = %

Criterion of comparison. Since

2 1 1
Ay = nt > > —=b, for n > 3,

(n+1)vn+3~ Vn+3

and > b, = > 1/n is divergent (the harmonic series again), the larger series

g z:: n +7; J:/Q_g divergent.

Example 2.8 Check if the given series is convergent or divergent,

i4n2+5n—2
2 3/2°
= n(n?+1)%

Criterion of equivalence. Put

4n? +5n—2

I

By counting the degrees we are led to choose b, = 4/n%. Then

1\ 3/2
.n3 _
b, n(n2 + 1)3/2 4 n-n (1 + n2> 4

— 1 forn — oo,

a, An*+5n—-2 n2 <4+§_32> n?
n
so (ay) and (by,) are equivalent. Since
i bn, i x is convergent,
n=1 n=1 Tl
it follows that also
~4dn? +5n -2 . .
_ is convergent.
n=1 n(n2 + 1)3/2 .
Criterion of comparison. Since
4 + b2
2 _ 2 - — = _
Do dnPaEn=2 _n? W _A45-0 1 _ 9

n(n? +1)3/2 na ( 1\32 = (14032 n2  n2
1y —)

Download free books at BookBooN.com
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Calculus 3c-2 Simple convergence criteria for series

where the larger series

(oo}

o0

1 .
Z b, =9 Z 3 is convergent,
n=1 n=1

the smaller series

o

o0
An? +5n — 2
nz::l Gy, = z::l % is also convergent.

o
Qacha?
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Calculus 3c-2 Simple convergence criteria for series

Example 2.9 Check if the given series is convergent or divergent,

n—Inn
n2 4+ 10n3"

The series looks horrible, but if we use the principle of taking the dominating factors outside the
expression, then the task becomes fairly easy:

It follows by the magnitude that the latter factor converges towards 1/v/10 for n — co. We have now
two variants.

Criterion of equivalence. If we put
1
bn = ;
Vv10-n

it follows from the above that

—1 for n — oo,

thus (a,) and (b,,) are equivalent. Since > b, =

i 1/ w is also divergent
n2 + 10n3 '

n=1

is divergent, we have that

1 1
Ji0 > n

Criterion of comparison. Since 1/4 < 1/4/10, it follows from (1) that there is an N € N, such that
1
ap, > — - — = by for every n > N.
n
Since the smaller series
- 11
Z b, = 1 Z - is divergent,
n=N n=N

then the larger series

oo (o)
-1
E 1 Op = g % is also divergent.
o

Download free books at BookBooN.com
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Calculus 3c-2 Simple convergence criteria for series

Example 2.10 Check if the given series is convergent or divergent,
o0
> (V14n?—n).
n=1

The insides v/1 + n? — n is of the type “oco — 00”, so we must first make a rearrangement

o — /—1+n2_n_(\/1+n2)2_n2_ 1 1 1
" vV1+n2+n n+vV1+n2 n

—.
14 4/14 —
n

It follows immediately from this that

1
— =, >0.

Qnp Z m

1 1
— 5" — is divergent, the larger series
n

Since the smaller series Y b, = 5

oo oo
Z a, = Z(\/ 1+n2—n) is also divergent
n=1 n=1

according to the criterion of comparison.

1
We can alternatively apply the criterion of equivalence with b,, = o because
n

b, 1 / 1 1
a:5{14_ 1+F}—>§{1+1}:1 for n — oo,

thus (a,) and (b,) are equivalent. Since

i b, = % i % is divergent,

n=1

3
—

we also have that

an, = Z(\/ 1+ n%—n) is divergent.

n=1

[M]8

3
Il
-
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Calculus 3c-2 Simple convergence criteria for series

Example 2.11 Check if the given series is convergent or divergent,

i exp(—v/n)
n=1 \/ﬁ

Whenever the exponential function appears together with a term which is almost polynomial, one
should immediately think of the different magnitudes and try to make a comparison with a known
convergent series.

Here we choose the standard series

oo o0 1

E by, = E —5 which is convergent.
n

n=1 n=1

We shall isolate the factor 1/n?. This gives the following estimate

0<an:4:— _ =

vn n? vn n?

3

exp(—y/n) 1 . n? exp(—+/n) 1 -{(\/ﬁ)ge_‘/ﬁ}.

x

Due to the law of magnitudes, z°e~* — 0 for n — oo.

Then put = y/n — oo for n — co. We see that there exists an N € N, such that

1
0<a, <—=by for n > N.
n

Since the larger series

o0 o0 1
g b, = E 2 is convergent,
n=N n=N

then the smaller series

oo oo
Z a, = Z W is also ckonvergent
n=1

n=1

. . N-1
since we only add a finite number of terms > "} a,.

Example 2.12 Check if the given series is convergent or divergent,

s
N
n=1nln (1 + —)
n
Criterion of comparison. We get from
1
O<nln(l+—)<In2-n,
n

that
1 1

_—— > — =b, > 0.
1

nln(1+ —
n

n = n2

S|

Download free books at BookBooN.com
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Calculus 3c-2 Simple convergence criteria for series

Since the smaller series

— 1 1
Z b, = 2 Z - is divergent,
n=1 n=1
the larger series
oo (o) 1
Z Qp = Z — I\ is also divergent.
n=1 n=1nln <1 + —>
n

Alternatively we prove that the necessary condition of convergence is not fulfilled. In fact, we
get by Taylor’s formula

In(1+z) =z + xze(x).

If we put x = 1/n — 0 for n — oo, then

1 1 1 1 1
nln<1+—>:n{—+—5(—>}:1+5<—)—>1 for n — oo,
n n n \n n

hence

1

-
1
nn|14+ —
n

The necessary condition of convergence is not fulfilled, hence the series is divergent.

= =

ay = =1#0 for n — oc.
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Calculus 3c-2

Simple convergence criteria for series

Example 2.13 Check if the given series is convergent or divergent,

=1

E —Arccot n.
n

n=1

We get by Taylor’s formula that
Arctan x = x + ze(x).

Put x = 1/n. Then

S|

1 1
0 < a, = — Arccot n = — Arctan — =
n n n

hence

1 1 2
n n n

Since the larger series

o0 o0 1
b, =2 — i
Z n Z 3 1S convergent,
n=N n=N

it follows by the criteria of comparison that the smaller series

o0
1 .

E — Arccot n is also convergent.
n

n=1

{1
—+
n

for n > N.

Example 2.14 Check if the given series is convergent or divergent,

= 1
> In(1+ =)
n=1
We get by Taylor’s formula that
In(1+z) = 2 + xe(x).
We even get by a graphical consideration that
O<In(l+z) <=z for z > 0.
If we put z = 1/n?, it follows that

1 1
0<an—ln<1+—2><—2—bn,
n n

The larger series

(o] o0 1
E b, = E 2 is convergent,
n=1

n=1

for n € N.

25
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0.5+

0.‘2 0.‘4 0.‘6 0.‘8 ‘1 1.‘2 1.‘4 1.‘6 1.‘8 é
X

hence the smaller series

o0 oo 1
Z apn = Z In (1 + §> is also convergent
n=1 n=1

by the criterion of comparison.

Example 2.15 Check if the given series is convergent or divergent,

> (3n)!13"
Z n3n92n !
n=1

This example either assumes Stirling’s formula or the criterion of quotients combined with a pocket
calculator.

It follows from Stirling’s formula

= vam (1) {14 (3)}

when n is replaces by 3n that

(3n)! = Vo (%")M {1 e (%) } ,

hence

13n / .a3n |, 3n  an 1 4\"N 1
an:(?’:)?’ _ Vbrn 37 073 {1+5<—>} 67m~<3—) {1+5<—>}.
n3n92n e3n . p3n . 4gn n 4e3 n
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We get by a calculation on a pocket calculator that

34
a:@%1,008>1,
hence
an\/&r—n'a"{lJre(%)} — 00,

and the necessary condition of convergence is not fulfilled, and the series is divergent.

Alternatively we apply the criterion of quotients. Since

(3n)!3™
n = n3n . 922n > 0’
we get
Uny1 (3n + 3)13n+1 n" 22" (3n+3)(3n+2)(3n+1)3
an  (n41)3nH3.22042 0 (3p)13n 1\*"
(1+—> “(n41)3-22
n
4
— —— =1,008>1 for n — o0,
ed -4

where we again have used our pocket calculator.
Since the limit value is > 1, it follows from the criterion of quotients that the series is divergent.

Example 2.16 Check if the series

> (v

18 convergent.

The structure invites an application of the criterion of roots. The criterion of comparison may also
be applied. Anyway, an application of the criterion of quotients will be rather messy, although it is
also possible to succeed in this case. See below.

Initial investigation. Since {/n > 1, we have ({/n —1)" > 0 for n > 2. Since even {/n — 1 for
n — 0o, there exists an N, such that

0< n—-1< for every n > N (one may here even choose N = 2).

N | =

1) Criterion of roots. Since

Ylan| = ¥Yn—-1—-0<1  for n — oo,

it follows from the criterion of roots that the series is convergent.

Download free books at BookBooN.com

27



Please click the advert

Calculus 3c-2 Simple convergence criteria for series

2)

Criterion of comparison. Since

1
0< n—-1<

3 for every n > 2,

we get the estimate
O<Z({L/7_1—1) <Z(§> 25,
n=2 n=2

and the series is convergent.

The criterion of quotients becomes very messy:
n n+1 "
ot ("WarI-D" /a1 ".(,ﬁ\l/n_ﬂil)
an (¢/mn—1)" Yn—1 '

This does not look nice. We can, however manage it by noting that the latter factor — 0 for
n — oo, and by convincing oneself that the former factor can be estimated upwards by 1, by
proving that {/n — 1 is decreasing in n for n > 3, which means that the numerator is smaller than
the denominator.
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Calculus 3c-2 Simple convergence criteria for series

Example 2.17 Check if the series

o0 2”
>
n=1n

18 convergent.
First variant. According to the rules of magnitudes,
ap = — — 00 for n — oo,

hence the necessary condition of convergence is not fulfilled, and the series is divergent.

Second variant. Since a,, = 2"/n” > 0, we get by the criterion of roots that

nl2"
0< Van = W:

2
—— —2>1 forn— oo,
(¥/n)
showing that the series is divergent.

Third variant. Choosing the same a,, we get by the criterion of quotients that

a ontl  p? 2
ntl 2 =—— —2>1 for n — oo,

an _(n+1)7.2_" 1
(1+3)
n

and we conclude that the series is divergent.

Example 2.18 Check if the series
5 ()
n=2 n

18 convergent.

First variant. The structure invites to an application of the criterion of roots. Put

an:(ln_n) >0 for n > 2.
n

Then
1
Ya, =—Inn—-0<1 for n — oo,
n

by the laws of magnitudes. Then the series is convergent by the criterion of roots.

Second variant. Put

Inz _ 1—-Inz

fl@)=—  med [f(z)=

x 2
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Calculus 3c-2 Simple convergence criteria for series

Then we have a global maximum for x = e, thus

Inn 71ne 1

0<—=f(n)< fle)= — = - for n > 3.
n e e
Then
O<an—<ln—n> <i:bn for n > 3.
n e?L

The larger series is convergent, because it is a quotient series of quotient 1/e €]0, 1],

) © 1IN
AN

and thus convergent. Then it follows by the criterion of comparison that the smaller series
= = /Inn\"
22 (0)

is also convergent.

Third variant. It is possible to apply also the criterion of quotients, but this will give a terrible

mess, so the details are ere left out.

Example 2.19 Check if the series
n=1 3"

is convergent.

First variant. Criterion of roots. Since a,, > 0 and

Lf20+n? 2, 22
0< Ya, = %:g 1+;—nﬂg<1 for n — oo,

it follows from the criterion of roots that the series is convergent.

Second variant. Criterion of quotients. Since a,, > 0 and

(n+1)2
anpr 2L+ (n+1)2  3n 2 1t D 2
P T e A I s

it follows from the criterion of quotients that the series is convergent.

Third variant. Criterion of comparison. Since

2n 4 n?  2m 4 2n 2\"
0< < =2-{= ,
n. = 3n (3)
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2 n
and the larger quotient series > 2 - (§> is convergent, it follows from the criterion of comparison

that the given series is convergent.

Addition, fourth variant. By using the theory of power series it is possible explicitly to find its
sum. We have for |z| < 1

1 oo
. n
lfz_zx ’
n=0

and we are allowed to differentiate each term separately

2 = n—2
Then
o 2
2.n _ 2 22 _ 2 z
T;nx =z Z n(n —1) —|—xnz:1nx TE +(1—x)2'

n=2
(n=1)

Choosing x = 3’ which immediately gives the convergence, we get

9 11
n oo n — 2._ _
2" 4 p? 5 (1 3 9 3 3 377
ZE Z() #3(5) = Ayt it i=g
" N " 3271 9

Example 2.20 Check if the series

2"+3n
Z

s convergent.

First variant. Find the sum directly. Every term is positive, so we may split the series. Then it
is reduced to two convergent quotient series,

1 1
= 2" 4 3" i L ‘”(1)" = /1\" 3 5 3
SISy e (1) 2 (5) - B -k
n=1 6 n=1 6 n=1 6 n=1 3 n=1 2 1-— 1 1-— 1 2
3 2
Second variant. Criterion of comparison . Since
2n 43" 3+ 3" 1
0<a,= < =2 — =b,,
“ 6" 6n on

and the larger quotient series > b, (quotient 1/2 < 1) is convergent, the smaller series

[eS) [e%S)
on 3n
Z Ap = Z ;;L is also convergent.
n=1

n=1
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Third variant. Criterion of roots. Since a,, > 0, and

/2" " / 2\" 1
W:” ;_13 :%"1+(§> —>g-1:§<1 for n — oo,

it follows from the criterion of roots that the series is convergent.

Fourth variant. Criterion of quotients. Since a,, > 0, and

2 n+1
n+1 n+1 n n n+1 1+(_>
g1 2" 43 6" 6" 3 3 -
an  Gntl gnggn  gnrl gn o\T s e
1+(§)

it follows from the criterion of quotients that the series is convergent.

.
s &
= F
| \" Y
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Calculus 3c-2 Simple convergence criteria for series

Example 2.21 Check if the series

> 5n—1

>

n=1

18 convergent.

1) Prove directly that the series is crudely divergent. It follows from the laws of magnitudes that

5n—1

ap = — 00 # 0 for n — oo,

n2+n
hence the necessary condition of convergence is not fulfilled.
2) Alternatively we get by the criterion of roots that
o) Bl 5
Vlan| = n2+n:{1/5~{/ﬁ~{‘/n—+1—>5>1 for n — oo,

hence the series is divergent.

3) Alternatively every a,, > 0, so by using the criterion of quotients,

O<an+1: 0 .n(n+1):5. i —5>1 forn— oo,
an, (n+1)(n+2) 571 n+ 2

and the series is divergent.

Example 2.22 Check if the series
i n?+1
— n3 +1

is convergent.

2

n
Since Py is a quotient between two polynomials, the criteria of roots and of quotients will both
n

give the limit value 1, so nothing can be concluded by applying these two criteria.

It follows instead by the equivalence

1 1

Ay = 3 1 ﬁ 1 _E 1 NE bna
n+ 1+—3 1+—3
n n

that the series behaves approximately like the divergent harmonic series. Then by the criterion of
equuivalence se series

oo

2
1

Z n3 i is divergent.
= ntt 1
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Example 2.23 Check if the series
i (n+ 1)
I
s (2n)!
18 convergent.

Whenever the faculty function occurs, apply only the criterion of quotients and avoid the criterion of
roots.

Criterion of quotients. First check the assumption

ap = W > 0, OK.

Then we get [be aware of the calculation of a, 1]

Uni1 7 (n+2)2(n+1) (271)' B n+2 2(n+1) (n+1)2
an  (2n+2)!  (m+1)2 \n+1 (2n+2)(2n +1)
1
1\ 2 1 1+-=
n+ 14+ —

2n

1 n
When we apply the standard sequence (1 + —) — e for n — oo, we get
n

Qg1 | o 1 140 _ (e)2

an Zm— = >1 for n — oo.

2

It follows from the criterion of quotients that the series is divergent.

Remark 2.4 It is possible also to use the Criterion of roots (excluded here) if we apply Stirling’s
formula.

Remark 2.5 If we instead use the rather sophisticated estimate
2n—j4+1)j<(n+1)n forj=1,...,n,
(prove this), one may directly prove the coarse divergence,

2n 2n 2n n
(n+1) (n+1) . (41D <1+%> -

T ) I @n 0T (D

thus a,, does not converge towards 0 for n — oo, proving that we have coarse divergence.
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Example 2.24 Check if the series

n2n+1

2:21 97 (n!)?

18 convergent.

The structure indicates that we should apply the criterion of quotients. Since a,, > 0 and

g1 (n+1)>  9n@m)? 1 (n+ D 1(n+1>2”+1

an 9 ((n+ )2 w2t T 9 (p41)2  p2etl 9

ny 2
1 1 1 1 2
= §< +E)'{<1+E> } —g = (5) <1 oo

it follows from the criterion of quotients that the series is convergent.

n

Example 2.25 Check if the series
—Vn Vn
18 convergent.

Since tanz > x for 0 < x < 1, we get

1 ; - 1 1 1 b
ap = —=tan— > — - — = — = b,.
" /n vn = yn o yn on "
The smaller series Y b, is the divergent harmonic series, hence it follows from the criterion of com-
parison that the larger series

3
Il
-
3
Il
i

is divergent.

Example 2.26 Check if the series
= nl
> 30

is convergent.

Since the faculty function occurs, one should use the criterion of quotients and avoid the criterion of
roots.

Criterion of quotients. First check the assumption

—— >0, OK.
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Da (n+1)? = n? + 2n + 1, fas dernzest, at

~ (n+ 1)
Unt1 = 5ot

It follows from the laws of magnitudes that

2
anpr  (n+ 1)1 2007 pp]
a,  oniten+l ol T o9l 0<1 forn— oo

(The exponential function dominates any polynomial).

It follows from the criterion of quotients that the series is convergent.
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Calculus 3c-2 Simple convergence criteria for series

Example 2.27 Check if the series

> (2n)!
>y &

n=1

18 convergent.
The faculty function occurs we use the Criterion of quotients.

First check the assumption,

2n)!
an = ( ;l) >0, OK.
n n

Then calculate a1 separately (in order to avoid errors),

o @{n+1ht (2 +2)!

Any1 = (n + 1)2(n+1) (n+ 1)2n+2°

Finally, check the quotient,

any1 (20 +2)! n?  (2n+2)2n+1) (2n)! . n 2n. 1
0 < an (n+ 1)2n+2 ) (2n)! N (2n)! (n+1> (n+1)2
(2n+2)2n+1) ' 1 4 _ (%) .

T

n

1
because <1 + —> — e for n — oo (a standard sequence).
n

Then the criterion of quotients shows that the series is convergent.
Example 2.28 Find all values of the constant a € R, for which the series

o0
a™n!
>

n=1

18 convergent.

n

!
From a > 0 follows that b,, = an > 0, hence we get for the quotient
nn
bn n+1 | n
+1:a (n+1)- n = a n‘*g fOI‘nHOO.
by, (n4+ 1)+ annl ( 1 )
14—
n

We conclude by the criterion of quotients that the series is convergent for 0 < a < e, and divergent
for a > e.

Investigation of the possible convergence when a = e. We cannot conclude anything from the criterion
n

1\" 1
of quotients itself, but since (1 + —> is increasing, it follows that (1 + —) < e for every n, thus
n n

b e e
ntl >-=1 for every n € N,
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which shows that (b,,) is increasing. Since every b, > 0, we conclude that the necessary condition of
convergence is not fulfilled. Hence the series is divergent for a = e.

Alternatively we apply Stirling’s formula

w=vam- (1) {1e (1)}

If a = e, then

=G = (v ) e () v ()

hence b,, — oo # 0 for n — 0o, and the necessary condition of convergence is not satisfied.

We conclude that we have convergence for 0 < a < e and divergence for a > e.

Addition. If we put

e"n!
Cp = W, n e N,
then
Cn+1 e 1 e

. = ) e = T . - —1 forn— cc.
(1+—> 1+ - (1+—)
n n n

Then by Taylor’s formula (with three terms),

1 1
In(l+z)=x— 53:2 + §m3 + z3¢(z).

Writing = 1/n, we get

: 1+1"“/2 +1 1 11+11+151 1+11+1€1
n —_ = —_ _— = — e _— —_ = _— _ —_ 5
n " 2 n 2n?2  3n3 nd n 12n2  n2 \n

hence

Cn+1_ e o € _ 1
A A B A A N S S e
- X — 4+ —c| - xp|——=+—¢( -
<1+n> P 12n2 n2 \n P 12n2 n2 \n

for n > N. This shows that (¢,) is decreasing eventually, so (¢,,) is bounded

<1

e"n!

O<anw

< kl,
thus

n
nl<ki-e "n"t2% = ki (E) )
e

On the other hand, (b,) is increasing, so

e"n!

b, = > ko >0,

nn
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and thus
n!>ky-e " n" = ko (g) .

Therefore, there exist positive constants k1, ko, such that

ey - (%)" <nl < ki (%)” for n € N,

and we are pretty close of a proof of Stirling’s formula.

Example 2.29 Prove that the series

|
Z (Inn)p

n=2

is divergent for every p € R.

According to the laws of magnitudes, to every p € R there exists an N, € N\ {1}, such that

(Inn)? <n for n > N,,.

Then

1
(Inn)p

1
a, = > —=b, for alle n > N,.
n

The smaller series is the divergent harmonic series, so it follows from the criterion of comparison that
the larger series is also divergent. Since p € R was any number, the claim is proved.

Example 2.30 Check in each of the following cases if the given series is conditionally convergent,

absolutely convergent or divergent.

(1) ,i(”“ <”Zl F o 2> .

1) It follows from the rearrangement

1 1 1 1 1
n+ i n 9
n n+1

n_n—ﬁ—l:n(n—i—l)Nﬁ

and the criterion of equivalence that the series is absolutely convergent.

39
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2) Tt follows from the rearrangement [cf. (1)]

n+1 n 1
——1=14———1 fi —
- +n T +n(n+1) #0 or n — 0o

that the necessary condition of convergence is not satisfied, so the series is (coarsely) divergent.

3) It follows from (2) and a Taylor expansion that

n+1 n 1
1 —1)=In(1+ ——
n< n +n+1 ) n( +n(n—|—1)>

n(n1+ " n(nl—l- D° (n(nl—i- 1)) ~ %

Then it follows from the criterion of equivalence that the series is absolutely convergent.
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Calculus 3c-2 The integral criterion

3 The integral criterion

Example 3.1 Check if the given series is convergent or divergent,

V2n —1In(4n + 1)
Z n(n+1) '

—Q

It follows from the integral criterion that > n~* is convergent for o > 1. We shall need this result

below.

Let alone the logarithmic term we see by counting the degrees of the other terms that we should
compare with

= 3
Z£ hvor o = = > 1.
ot no 2

3 5 1 5
Since — = — + —, where we still have 1 > 1, we can dominate the logarithmic term by n'/4

4 b
the laws of magnitudes give

, because

1
Indn+1) < — - ¥n for n > N.
(an+1) < 2= ¥

Then
1
V2on - —¥n

0<an:\/2n—1ln(4n+1)_ V2 _ 1 forn > N.

n(n+1) n-n nb/4

5
Since o = 1 > 1, the larger series

1
Z 571 is convergent.
n

By the criterion of comparison the smaller series

is also convergent.

V2n —11n(4n + 1)
Z n(n+1)

Example 3.2 Check if the given series is convergent or divergent,
i Arctan n
“~ nln '
In this case we compare with a series which according to the integral criterion is divergent.

™
Now, Arctan n > Arctan 1 = 1 thus

Arctann _ 7 1
Ay = Z -
nlnn 4 nlnn

=b, for n > 2.
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1
Since f(z) = zInz tends increasingly towards oo, it follows that —— tends decreasingly towards 0.

Since

t
d
/2 xljx = [In(lnz))4 = In(Int) — In(In2) — oo for t — oo,

it follows by the integral criterion that the series

Z by, = 1 Z o is divergent.
n=2 n=2

By the criterion of comparison the larger series

oo

Arctan n . .
Z _— is also divergent.

nlnn
n=2

Example 3.3 Prove the inequalities

I

=N | 1
4 < ; n?+1 < 2 +
We shall use the integral criterion.

1) Identification of the function. Clearly, we shall choose

flz) = 332#4—1 for z € [1, 00].

1
2) Assumptions. Obviously, f(z) = o)
x

nlnn

tends decreasingly towards 0 for x — oo in [1, co].

3) By the integral criterion, > oo | f(n) and [ f(z)dx are both convergent (or divergent) at the

same time. We get in case of convergence
e} e 1 00
xr)dr < — < f(1) + z)dz.
[ <SS < i [

4) When we calculate the integral we get
o < dx o T
/; f(l') dr = /; 1_’_—12 = [Arctan xh = Z
Therefore we have convergence.

1

1
5) Since f(1) = = —, we get by insertion into the estimates of (3) that

1241 2

w3
N

=1 1
<;n2+1<5+

42
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Example 3.4 . Prove the inequalities
— 1

< J—
> <
n=2

As a rule of thumb we shall only go through harder estimates by either Leibniz’s criterion or by the
integral criterion. This series is not alternating, so n Leibniz’s criterion cannot be used.

| ==
-

Instead we shall try the integral criterion.

1) Identification of the function. Obviously, we shall choose

1
flz) == for x € [2,00].
1
2) Assumptions. Clearly, f(r) = — is a) decreasing on [2, 0o, and b) tends towards 0 for z — oco.
x
3) Then by the integral criterion,
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Calculus 3c-2 The integral criterion

4) Calculation of the integral gives

o <1 1 17 1

1 1
5) Since f(2) = 3 =g e get by insertion into the estimates of (3) that
1 -1 1 1 1
s<l W <stiT1

Example 3.5 Prove that the series
i ) ( V1+n? )
n|XY—"
n
n=1
is convergent, and that its sum is smaller that %

It follows immediately by the rearrangement

o= () < () <B4 eino

2

that f(z) is decreasing and that f(x) — 0 for z — oc.

Then we get by partial integration,

/f(a:)dac %/1'1H(1+x2)—/1-lnxdx

= %{x'ln(l—kxz)—/lix;dm}—{m-lnx—/%dm}
1 1
§x{1n(1+x2)—2lnx}—/<1—m> dr +

1 1
= —zln(1+ — |+ Arctan z.
2 2

The estimate In(1 + y) <y for y > —1 follows easily from the graph. Then by putting y = 1/x2,

1 1 1
0<I1H<1+—2)S$'—2—H0 for x — oo.
T x T

This implies that the improper integral is convergent

o 1 1 1
/ f@)de = lim {§x1n<1 + —2)+ Arctan x}§ +1-In(1+1)— Arctan 1
1 T—00 x
T 1 ™ 7 1

From the integral criterion follows that the series

S (—1;”2> =3 )
n=1 n=1
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0.5+

0.‘2 0.‘4 0.‘6 0.‘8 ‘1 1.‘2 1.‘4 1.‘6 1.‘8 é
X

is convergent and that we have the estimate

> V1+n2 o0 1 T 1 T
In | +—" 1 dr=-In2+ - —-In2=—.
Son (V) s [T e juas §- jma=

Example 3.6 Check for each of the following series if it is convergent or divergent,
o0 o0 1
W) Y- VeED @) 3 Vi)

Notice that we have the well-known result (n —vn? —1)(n +vn? — 1) = 1.

It is obvious that

(n—vn2—1n+vn2-1)=n*-(n*-1)=1.

Since 0 < v/n? — 1 < n, it follows in particular that

1
]_ S_a
N 0<n—vVn2—-1= ———— for every n € N.
() n+ /n2_1 >;i_7 y
n

1 1
1) Tt follows from (2) that n — vVn? —1 > o Since >, o is divergent, we conclude from the
n n
criterion of comparison that > (n — v/n? — 1) is divergent.
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The integral criterion

2) Tt follows from (2) that
0 2-1)< .

1
Since 0% 32

criterion of comparison that the series
— 1
Z —(n—-vn?-1)
n=1 \/ﬁ

is convergent.

Example 3.7 Let a be a real number bigger than 1. Prove that

o0

1 o 1

JE— < PO
n® a—1 ko1
n==k

for k € N.

Hint: First use the integral criterion to prove that

oo

1 1 1
gn—a<k—a+m for k € N.

3
is convergent by the integral criterion, because (a =3 > 1>, it follows from the

1
It is obvious that when o > 1, then f(¢) = = is decreasing for ¢ > 0 with the limit value. By

considering an area we get

1 1 % 1 1 A
— < + —dt +
k

= ne ke ke 1-a
B i_'_ 1 _a—1+k
kY (a— 1Dkl (@ — 1)k
ka—(k—1)(a— )< « 1
(v — 1)ke “a-1 kel

because £ > 1 and o > 1.
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4 Small theoretical examples

Example 4.1 Let Y a, be an infinite series of positive terms. Prove or disprove the following

claim:

o If > ay, is divergent, then Y . a? is also divergent.

1
This claim is wrong. In fact, if we choose a,, = —, then
n

is divergent,

is convergent.
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Calculus 3c-2

Small theoretical examples

1
We know in general that if a, = —, then
n

oo o

1
Z ap = Z v is divergent for oo < 1,

oo o0 1

2 _ .
E a;, = E 2 1S convergent for 2a > 1.
n=1 n=1

We see that we get counterexamples of the claim, if only

1< <1
— <« .
5 <

Example 4.2 Let Zzozl an be an infinite series of positive terms.

claim:

a
oo 2 00 n .
o If> ", a is convergent, then Y~ | s also convergent.

The claim is true, which is proved by a small trick. It follows from
2
1 1 n
O§<an——> :ai+—2—2a—
n n

by a rearrangement that

> I, 11
D=3 at5)

Prove or disprove the following

as a sum of two convergent series of positive terms. Using the criterion of comparison the smaller

series

an

M8

— is convergent.
n

I
-

n

Remark 4.1 By a modification of the proof above it follows that

a 1
00 2 - 00 n .
e If " | a; is convergent, then > | e is convergent for every o > —.

2
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5 Conditional convergence and Leibniz’s criterion

Example 5.1 Prove that the following series is conditionally convergent
5 o
Incoshn’
n=1

Since Incoshn > 0, and In cosh n tends increasingly towards 400, we see that

1

— —0 decreasingly for n — oo.
Incoshn

In particular, the necessary condition for convergence is fulfilled.

Absolute convergence? Using the definition of cosh, we get the following estimate for every n € N,

n -n n “+n
0 <Incoshn =1In (%) <In <%> =n,

hence

1

bn = In coshn

1
> — = ap.
n

The smaller series > > a, = > .- — is divergent (the harmonic series), hence the larger series

n=1

oo oo 1
nz::lbn - nz::l In coshn

is also divergent according to the criterion of comparison. This proves that the series is not er
absolutely convergent.

1
Conditional convergence? The series is alternating, Y., ,(—1)"b,, where b, = Toosin 0 is
ncoshn

decreasing for n — oco. It follows from Leibniz’s criterion that the series is convergent.

Since the series is convergent, though not absolutely convergent, it must be conditionally convergent.

Example 5.2 Prove that the following series is conditionally convergent,
SREE
Insinhn’
n=1

Since Insinhn > 0 for n € N, and Insinhn increases to +o0, it follows that

1

— — 0 is decreasing for n — oo.
Insinhn

In particular, the necessary condition for convergence is fulfilled.
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Absolute convergence? By using the definition of sinh we obtain the following estimate for every
neN

O<lnsmhn—ln<%> <In (e ;6 )—m

hence

1

1
n— ———— > — = Up.
" lnsinhn T n "

. ., . . . .
The smaller series > 2 a, = > o, — s divergent (the harmonic series), so the larger series

oo o0 1
Z bn = n; Insinh n

n=1

is divergent according to the criterion of comparison. This shows that the original series cannot
be absolutely convergent.

1
(—1)”bn, where bn = ﬁ — 0
nsinhn
decreases for n — oo. Then it follows from Leibniz’s criterion that the series is convergent.

Conditional convergence? The series is alternating, > .-,

As the series is convergent, though not absolutely convergent, it is conditionally convergent.
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Calculus 3c-2 Conditional covergence and Leibniz’s criterion

Example 5.3 Check if the given series is absolutely convergent, conditionally convergent or divergent,
(o)
2
Z(fl)" cos (—W> .
n
n=1
The necessary condition for convergence? From

lan| =

2
cos(—ﬂ-)‘—>0080:17é0 for n — oo,
n

follows that the necessary condition of convergence is not fulfilled, hence the series is (coarsely)
divergent.

Example 5.4 Check if the given series is absolutely convergent, conditionally convergent or divergent,

i(—l)”sin (2%) .

n=1

. . 2w . e
The necessary condition for convergence? As sin (— — 0 for n — oo, this condition is
n

satisfied.

Absolute convergence? We see that

2 2
sin (—W>’ = sin (—ﬂ> forn >4
n n

2
where ZX € ]0, %] for n > 4. Hence, by a consideration of a graph we get for n > 4 that
n

. 2 2 27 4
lan| =sin (%) > 2. 20 = 2,
n T n n

4
n

lan| =

1
The smaller series > - , — =4 2, — is divergent, hence the larger series Y -, |a,| is also divergent
n

according to the criterion of comparison, and the series is not absolutely convergent.

. . 2m _—
Conditional convergence? As |a,| = sin <—) for n > 4 decreases towards 0, and the series is
n

alternating for n > 4,
S (1)"sin (%) - S (1)a
n=4 n n=4 w
it follows from Leibniz’s criterion that the series is convergent.

As the series is convergent, though not absolutely convergent, it is conditionally convergent.

Download free books at BookBooN.com

51



Calculus 3c-2

Conditional covergence and Leibniz’s criterion

0.8

0.6

0.4

0.2+

Example 5.5 Check if the given series is absolutely convergent, conditionally convergent or divergent,

i (—n"
— sinhn

Necessary condition for convergence? From sinhn — oo for n — oo, follows that

(=n"

- — 0 for n — oo,
sinhn

and the necessary condition is fulfilled.

Absolute convergence? We have e.g. that

—n

1 2

_ n
sinhn = % > %, implies 0<

sinhn = e’
The larger series
oo o n
4 1
> =1 (7)
n=1 e n=1 €
is a quotient series of quotient 1/e €10, 1[, hence convergent.

According to the criterion of comparison the smaller series

= 1
E - is convergent.
sinhn

n=1

We conclude that the original series is absolutely convergent.
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Example 5.6 Check if the following series is absolutely convergent, conditionally convergent or di-
vergent,

S (1" cosh (%) .

n=1
Necessary condition for convergence? It follows from
1
|an| = cosh [ — | — cosh0=1#0 for n — oo,
n

that the necessary condition for convergence is not fulfilled, so the series is (coarsely) divergent.

Example 5.7 Check if the following series is absolutely convergent, conditionally convergent or di-
vergent,

i(—l)" tanh (%) .

n=1
Necessary condition for convergence? As tanh [ — | — 0 for n — oo, this condition is satisfied.
n

Absolute convergence? The graph of tanh x is concave (cf. the figure), hence
0 < tanh(1l) -z < tanh(z)  for z €]0,1[.

When = = 1/n, we get the estimate

0.8

0.6

0.4+

0.2

02 04 06 08 1 12 14 16 18 2
X

1 1
tanh (—) > tanh(1l) - — > 0.
n n
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Since the smaller series

> 1 =1
Ztanh(l) = tanh(1) Z -
n=1 n=1

1
is divergent (the harmonic series), the larger series Y - | tanh ( —) is also divergent by the criterion
n

of comparison. This shows that the original series is not absolutely convergent.

Conditional convergence? As tanh(x) is increasing, we get

1
1) tanh (—) decreasing for n — oo.
n

1
2) tanh (—) — 0 for n — oo is proved above.
n

1
3) >0 (=1)"tanh <—> is due to the factor (—1)™ alternating.

n

The series is convergent according to Leibniz’s criterion.

Since the series is convergent, though not absolutely convergent, it is conditionally convergent.
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Calculus 3c-2 Conditional covergence and Leibniz’s criterion

Example 5.8 Check if the following series is absolutely convergent, conditionally convergent or di-

vergent,

o st (1),

n=1

1 .
Necessary condition for convergence? Because of Arctan(— — 0 for n — oo, this condition is
n

fulfilled.

Absolute convergence? The graph of Arctan x is concave (cf. the figure), hence
0< %xﬁ Arctan z for z €]0,1].

Putting = 1/n this gives the estimate

02 04 06 08 1 12 14 16 18 2
1 T 1

Arctan (—) > — . = for n € N.
n 4 n

The smaller series

1
is divergent (the harmonic series), hence the larger series Y-, Arctan <—) is also divergent accord-
n

ing to the criterion of comparison, and the series is not absolutely convergent.

. . 1 . . .
Conditional convergence? Since Arctan (— — 0 is decreasing for n — oo, and the series
n

1
Zle(—l)” Arctan (—> is alternating, it follows form Leibniz’s criterion that the series is conver-
n

gent.

As the series is convergent, though not absolutely convergent, it is conditionally convergent.
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Example 5.9 Check if the following series is absolutely convergent, conditionally convergent or di-
vergent,

e

n=1
Necessary condition for convergence? Since
1 T
|an| = Arccot [ — | — 5 #0 for n — oo,
n

the necessary condition for convergence is not fulfilled, and the series is (coarsely) divergent.

Example 5.10 Check if the series

i(_l)n—l . \/ﬁ

14+n

n=1

is absolutely convergent, conditionally convergent or divergent.

Use the flow diagram in Calculus 3b.

1) Is the series coarsely divergent? It follows from

1
lan| = l\j-ﬁn = — 0 for n — o0,
\/ﬁ‘f'%

that the series is not coarsely divergent.

2) Is the series absolutely convergent? Since

NZD - 1
n+l " n+1’

lan| =

we get (the harmonic series)

Z‘a"|_zn+1_gn+l_z

Then it follows form the criterion of comparison that the series is not absolutely convergent.

3) Is the series conditionally convergent? Obviously, the series is alternating. The auxiliary
function is

NG

f(x):$+1, x € [l,00[, where f(z) — 0 for x — oo.
Since
1 1 1-2 -1
T L EY.

2y z+1 (z+1)?% 2z (x+1)? 2yx - (x+1)2

for > 1, we see that f(z) decreases for x > 1.
According to Leibniz’s criterion the series is convergent.

As the series is convergent, though not absolutely convergent, it is conditionally convergent.
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Example 5.11 Check if the series
—2n—+n-lnn

is absolutely convergent, conditionally convergent or divergent.

Necessary condition of convergence? It follows from 2n — y/n - Inn # 0 and

2n—\/ﬁ'1nn:\/ﬁ{Qf—lnn}:n{2—lnTn}—>oo for n — oo,
n

that

B Gt N
2n —/n-Inn

00 for n — oo,

hence the necessary condition of convergence is fulfilled.

Absolute convergence? AsInn/\/n — 0 for n — oo, we have

1
0<2n—+vn-Inn=n o 2L 9y for n > 2.
vn
Hence
1 11
- > — - —,
2n—+/n-Inn " 2 n
The smaller series > , 53— = £ > , L (the harmonic series) is divergent, so the larger series
> s
—~2n—+/n-lnn

is also divergent according to the criterion of comparison. Thus the series is not absolutely
convergent.

Conditional convergence? Two of the conditions of Leibniz’s criterion have already been proved,
namely that the series is alternating and |a,| — 0 for n — co. We shall show that the sequence is
decreasing eventually. We introduce the auxiliary function (¢t ~ y/n)

o(t) =2t —t-In(t?) = 2t> — 2tInt,  t> V2.
Now
O'(t) =4t —2Int —2=22t—Int—1) >0  fort > 2,
so ¢(t) is increasing, and
0] = 1 1
" e(vn) o 2n—y/n-lnn

Then it follows from Leibniz’s criterion that the series is convergent.

is decreasing for n — oo.

As the series is convergent, though not absolutely convergent, it is conditionally convergent.
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Example 5.12 Check if the series
= L, Inn
> (=1
n+1
n=1

is absolutely convergent, conditionally convergent or divergent.

Apply the flow diagram from Calculus 3b.
1) Is the series coarsely divergent? We have

Inn

— 0 for n — oo
n+1

lan| =

by the law of magnitudes, so the series is not coarsely divergent.

2) Is the series absolutely convergent? Since Inn > 1 for n > 3, we get the following estimate
of the numerical series.

> Inn <1 ~ 1
nz::l n+1 = 7;3 il ;E =00 (the harmonic series).

It follows from the criterion of comparison that the series is not absolutely convergent.
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Calculus 3c-2 Conditional covergence and Leibniz’s criterion

3) Is the series conditionally convergent? There are several criteria in the literature for condi-
tional convergence, but at this stage one may assume that Leibniz’s criterion is the only known
one to most readers.

a) AsIlnn/(n+ 1) > 0, the factor (—1)" shows that the series is alternating.
1

b) If we put f(z) = r_1|_x1 it follows from 1. that f(z) — 0 for x — oo.
x

¢) It follows from

ron 1 Inz  z+1-zhz
fl) = wx+1) (@+1)2 z(w+1)?

that f/(z) <0, at least for & > 4, thus f(z) is decreasing eventually.

Then it follows from Leibniz’s criterion that the series is convergent.

As the series is convergent, though not absolutely convergent, it is conditionally convergent.

Example 5.13 Check if the series
o0
PR :
3n— an—1
is convergent or divergent. In case of convergence, check if the series is conditionally convergent or
absolutely convergent.
We have from the magnitudes,

1
0<la,| =3 3£< for n > ng.

The larger series Y 27" is convergent, hence the smaller series is also convergent by the criterion of
comparison, and the series is absolutely convergent.

Alternatively the convergence is obtained by the criterion of roots,

, 1 1
\"'/|an|:{7§-{‘/ﬁ~§—>§<1 for n — oo.
Alternatively the convergence is obtained by the criterion of quotients,

lani1]  3(n+1) 3" n4+1 1 1
o] = g ~3—n—T-§—>§<1 for n — oo.

Remark 5.1 It is possible directly to find the sum. In fact,

:Zx" for x €] —1,1],
n=0

p(r) ==

hence by differentiation each term (which is legal for power series in their open interval of convergence),

/
o' (z) = A=z an forx €] —1,1[.
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Choosing = = —% €] —1,1[, we get
N Nt /1y 19
Z g1 _Z” 3) ¥ \3)” N 16°
n=1 n=1 <1+§>

Example 5.14 Check if the series
DRE
- 3v/n
is convergent or divergent. In case of convergence, check if the series is conditionally convergent or
absolutely convergent.
Necessary condition for convergence? Since n — 3/n > 0 for n > 10, and

1 1 1
n—3/n o Jvi-3

this condition is fulfilled.

0 for n — oo,

Absolute convergence? Since
1 - 1
n—3y/n n’
e’} ]- . . . . . . . .
and )~ ,, — is divergent, it follows from the criterion of comparison that the numerical series
=n

o0

1
Z _ is divergent,
=on— 3v/n

and the series is not absolutely convergent.

Conditional convergence? The series is alternating, and a,, — 0 for n — oo. Thus we shall only
prove that

1
n—3yn

is decreasing in order to apply Leibniz’s criterion. However, the denominator

n— 3y = Vi (Vi 3)

is clearly increasing, so (3) is decreasing. Hence it follows from Leibniz’s criterium that the series
is convergent.

(3)

As the series is convergent, though not absolutely convergent, it is conditional convergent.
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Example 5.15 Check if the series
i (=1)
n=1 \/ﬁ

is convergent or divergent. In case of convergence, check if the series is conditionally convergent or
absolutely convergent.

n

Necessary condition for convergence Since 1/,/n — 0 for n — oo, this condition is fulfilled.

. 1 1 . . . .
Absolute convergence? Since — > — for every n € N, and since the harmonic series > -, — is
n - n n

divergent, it follows from the criterion of comparison that
>
n=1 \/ﬁ
is also divergent. This proves that the series is not absolutely convergent.

. . 1 . )
Conditional convergence? The series is alternating, and T — 0 is decreasing for n — oo. Hence,
n

it follows from Leibniz’s criterion that the series is convergent.

As the series is convergent, though not absolutely convergent, it is conditionally convergent.

Example 5.16 Check if the series
—In(e" +e77)

is convergent or divergent. In case of convergence, check if the series is conditionally convergent or
absolutely convergent.

Remark 5.2 Since In(e”™ + e~ ™) = In(2 coshn), this example is almost identical with Example 5.1.

Necessary condition for convergence? Since

0< ! < ! ! 0 f
In(em +e ™) " In(em+0) n orn e

this condition is satisfied.

Absolute convergence? It follows from

la| 1 - 1 1 . 1
a’I’L = = = = —,
In(en + e ™) ~ In(e™+e?) n+1n2 =~ 2n

where )" 5 is divergent, and the criterion of comparison that )" |a,| is divergent. Hence the series
is mot absolutely convergent.
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Conditional convergence? The series is alternating and |a,| — 0 for n — co. Since
In(e™ + e ") =In(2coshn) — oo is increasing for n — oo,

because both In and cosh are increasing, we have

1

m — 0 decreasingly.

It follows from Leibniz’s criterion that the series is convergent.

As the series is convergent, though not absolutely convergent, it is conditionally convergent.
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Example 5.17 Check if the series
= Inn

is convergent or divergent. In case of convergence, check if the series is conditionally convergent or
absolutely convergent.

n

Note that Inn > 0 for every n > 2.

Necessary condition for convergence? This is fulfilled, because

1
— =0 for n — oo.
Inn

Absolute convergence? We see that

1 1

Inn = n’

1

and since Y-, - is divergent, it follows from the criterion of comparison that }

2022 m is also
divergent. This proves that the series is not absolutely convergent.

Conditional convergence? The series is alternating, and

1
— =0 aftagende for n — oo.
Inn

Hence the series is convergent according to Leibniz’s criterion.

As the series is convergent, though not absolutely convergent, it is conditionally convergent.

Example 5.18 Check if the series
S
“— n(lnn)?

is convergent or divergent. In case of convergence, check if the series is conditionally convergent or
absolutely convergent.

Apply the flow diagram.

1) Is the series coarsely divergent? Since n(lnn)? — oo, it is obvious that

(=D"

n = n(lnn)

— 0 for n — oo,

and the series is not coarsely divergent.

2) Is the series absolutely convergent? Concerning the numerical series we get the auxiliary
function
1
)= ——,
/(@) z(lnx)?

for x € [2,00].
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The denominator tends increasingly towards oo (look at the derivative) for x — oo in [2, 00|, hence
f(z) tends decreasingly towards 0 for x — oo in the same interval.

According to the integral criterion

(o) 1 oo
nz:; ) and /2 f(x)dx

have the same property of convergence. Since the integral

o > dx 11 1
|, rwar=[ xam)z:[—ml ~ 2

is convergent, the series is absolutely convergent, where we apply the integral criterion.

Remark 5.3 One should here not be misled by the changing of sign (—1)" and immediately start
with Leibniz’s criterion. This is a waste of time! Leibniz’s criterion will only show the convergence,
so anyway one shall afterwards check the absolute convergens.

Example 5.19 Check if the series

S 1

— 1+ n?
is convergent or divergent. In case of convergence, check if it is conditionally or absolutely convergent.
Necessary condition for convergence? We see that

n2

T 1+n?

:lil—I—nQHl#O for n — oo,

|an|

so the necessary condition for convergence is not fulfilled, and the series is (coarsely) divergent.

Example 5.20 Check if the series

For(m(?)

is convergent or divergent. In case of convergence, check if the series is conditionally or absolutely
convergent.

Necessary condition for convergence? As
1
l—cos{—)—1—cos0=1—-1=0 for n — oo,
n

this condition is fulfilled.

Absolute convergence? Since |a,| = 1 — cos %, we get by a Taylor expansion

0<1 1 1 1 11+1 1 1 1+1 1 1 1
—cos— =1— —— =+ —=¢c| = =— =4+ —c|-)~==.
n 2 n2  n2 n 2 n?2  n? n 2 n?
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Calculus 3c-2
Now
U
2
n=1 2 n

is convergent, so by the criterion of equivalence,

oo

1
Z {1 — cos —} is convergent,
n

n=1
and we have proved the absolute convergence.

Alternatively,

;11

1
0<1—cos— =2si =
CObn St 2n  4n?

As Y~ 1/n? is convergent, it follows by the criterion of comparison that Y {1—cos 1} is convergent,

from which follows that we have absolute convergence.
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Calculus 3c-2 Conditional covergence and Leibniz’s criterion

Example 5.21 Prove that the series below is conditionally convergent and find its sum:

o~ ()" (n+1)
Z n(2n+1)

Necessary condition for convergence. Clearly,

1

14—
n+1 n
ol = BT D Tt o oo

so the condition is fulfilled.

Absolute convergence? As

lan| n+1 5" +1 1
an = = = -,
n2n+1) “n@2n+2) 2n

and ) 5~ is divergent, the larger series Y |a,| is also divergent, and the series is not absolutely
convergent.

Conditional convergence. Since

1 2n + 1 m+2)—n—1+1 1
1 n@n+t ):n(n+ )—n—-1+ =2n—14+ —— — 00 isincreasing,
|an| n+1 n+1 ntl

we must have that |a,| — 0 is decreasing. The series is alternating, so it follows from Leibniz’s
criterion that the series is convergent.

As the series is convergent, though not absolutely convergent, it is conditionally convergent.

Sum. We get by a decomposition,
n+1 1 1

n@n+1) n 2n+1

hence the sectional sequence becomes

N N N
R (DM L (=D)” (="
Now
N 1" el 1"
I
and

m
=1— Arctanl=1——
2n+1 rctan 4,

n=1 n=0

|
M=
T
+|=
—_ 3
1
5
|
WK
T
=
3

where we in both cases apply Abel’s theorem, i.e. both series are convergent according to Leibniz’s
criterion, and

o -1 n—1 00 _1)n
In(1+x) = Z %z", Arctan x = Z %:CZ”H, lz| < 1.

n=1 n=0
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Then it follows by taking the limit that

o0

et RN L
:1 — — :1———1 2
2n+1 N BN > n Z2n+1 g "

n=1 n=1 n=1

M

Example 5.22 Prove that the series below is conditionally convergent and find its sum

(=D)"(n+1)
n+2

b

M

Necessary condition for convergence? Clearly,

0<|an|=n7+1§l—>0 for n — oo,
nn+2) ~n

s0 |an| — 0 for n — oo, and the condition is satisfied.

Absolute convergence? We see that

n+1 1
|an| = Z )
nn+2) ~ n+2
1
and the smaller series Y 07, —— = > . — is divergent. Hence also >oo2 , |an| is divergent, and

the series is not absolutely convergent.

Conditional convergence. We see that

1 n(n + 2) . .
—=————=p+1-—— >0 is increasing,
|an] n+1 n+1

0 |a,| — 0 decreasingly. The series is alternating, so it follows from Leibniz’s criterion that the
series is convergent.

As the series is convergent, though not absolutely convergent, it is conditionally convergent.

Sum. We get by a decomposition,
ntl 11 1 1
nn+2) 2n 2n+2’

hence the sectional sequence becomes

N ) N N ) N N+2 n—
B I A L A () B A O G D
T ; n(n + 2) _57; n +§;n+2_§; n +§7;3 n
N
()™ 1( 1 1) 1((=)N (=N
=2 i T e e )

By taking the limit and applying a known sum we finally get

"(n+1) _ (=D 1 1
=1 = ~4+0=-—-In2
E: n+2 = Jim sy =) m g t0=g~hn

n=1 n=1
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Example 5.23 Prove that the series

oo

1 1 1
S Yl S e b
Z( ) n 2+3+

n=1
is convergent. Find an approximation s* of the sum of the series, such that

|s — s <1071

It is easily proved by Leibniz’s criterion that the series is convergent.

1
Since |s — s,| < ] (the absolute value of the first neglected term), we can choose n =9, thus
n

1 1 1

Remark 5.4 It is easy to prove that
In2 =~ 0,693 147.
This shows that the error here is < 101,

Example 5.24 Prove that the series

oo

Z(*Unfl IEo1

n=1
is convergent and find its sum. Check if the series is absolutely convergent.
n
Necessary condition for convergence. This follows from o1 0 for n — oo.
n2 —

n

s
4n? —1 — 4n?
that > |a,| is divergent, and the series is not absolutely convergent.

11 1 1
Absolutely convergence? Since =1 and Y07, i is divergent, it follows
n n

Conditional convergence. This can be proved by using Leibniz’s criterium, but this not neces-
sary here. In fact, we get by a decomposition that

n _ n 1 1 +1 1
4n2 -1 (2n—-1)2n+1) 4 2n—1 4 2n+1’

and the sectional sequence becomes

N N
_ n 1 (-t 1 (—1)nt
— )yl _ = DS A
SN > (1) in?—1 4Z om—1 +4Z 11

n=1 n=1 n=1

N
1 (-t 1 -1 .
= 3 E e + 1 E ST— (change of index)

N

1" 1 1) 1 (—1)N+!
(=1 ZQ( ) (=1

2n71+1n m—1 1 2N+1

1
—>Z for N — oo.
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We conclude that the series is convergent.

As the series is convergent, though not absolutely convergent, it is conditionally convergent, and its
sum is according to the above,

S

n=1

Si.

Swedish Institute

n

WWW.S

. 1
= lim sy = 1

n< — N—o0
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Calculus 3c-2 Conditional covergence and Leibniz’s criterion

Example 5.25 Check the values of o € R for which the series
= ne Inn

is absolutely convergent, conditionally convergent or divergent, respectively.

Necessary condition for convergence?. It follows from

ay| = — o0 forn — oo when o < 0
) b

n*lnn
that the series is coarsely divergent for o < 0.

Absolute convergence. Since

1 1 1
— for n > 2,

and Y2, n~% is convergent for o > 1, the series is absolutely convergent for o > 1.

Conditional convergence? If 0 < a < 1, then

1 1
> .
n®lnn — nlnn

1
Now, on 0 decreasingly, so by the integral criterion
nlnn

(oo}

1 * dx
annn /2 rzlnx [In(n )l >

and the series is not absolutely convergent for 0 < a < 1.

On the other hand, o1 — 0 is decreasing for n — oo and 0 < a < 1, and since the series is
n®lnn

alternating, it is convergent according to Leibniz’s criterion.

As the series is convergent, though not absolutely convergent for 0 < « < 1, it is conditionally
convergent.

Conclusion. The series is
1) Absolutely convergent for a > 1.
2) Conditionally convergent for 0 < a < 1.

3) Coarsely divergent for a < 0.
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Calculus 3c-2 Conditional covergence and Leibniz’s criterion

Example 5.26 Check the values of o for which the series
2
n=1 (n + 1)O¢
0s
1) absolutely convergent,

2) convergent,

3) conditional convergent.

1) Tt follows by the criterion of equivalence and

n? n 1

Ian|=W’“nﬁ—W’

that the series is absolutely convergent, if and only if 2 — 1 > 1, hence a > 1.

x
(1‘2 + 1)a ’
shall assume in the following. Now,

1
2) If we put f(z) = it follows that f(xz) — 0 for x — oo, if and only if o > 3 which we

20— 1)z — 1
(a )z <0 for x >

1
(22 4 1)et1 V2a—1’

so |a,| = f(n) — 0 decreasingly for n > 1/y/2a — 1, n — oco. The series is alternating, thus it

@)=~

1
follows from Leibniz’s criterion that the series is convergent, if and only if o > 3

3) The series is conditionally convergent, when it is convergent and not absolutely convergent. Ac-

1
cording to 1. and 2. this happens when 3 <a<l1.

As a conclusion we get that the series is

1) absolutely convergent for v > 1,

1
2) convergent for « > 2’
" 1
3) conditionally convergent for 3 <a<l,

4) coarsely divergent for o <

DN =
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Calculus 3c-2 Conditional covergence and Leibniz’s criterion

Example 5.27 Prove that the series
= = o1 2n+1
(@) X on =2 (-1 =
n=1 n=1
is divergent. Then prove that if one introduces parentheses into (4) in the following way
(a1 + az2) + (a3 + as) + (a5 +ag) + -,

then we get a convergent series.

Necessary condition for convergence?. Since

2 1 1
la,| = n =2+ =240 for n — oo,
n n

this cannot be fulfilled, so (4) is coarsely divergent.

Convergence by introducing parentheses. First calculate

1 1
agp—1 +az, = (=1)*"77 (2 M- 1) DT (2 " %)

1 1 1 1 1 1

= — ~

2 — = — yPr
2n—1 2n 2n—1 2n  2n(2n—1) 4n?

Here Y ° P is convergent, so it follows from the criterion of equivalence that
n
(o] o0 1
Qon—1 + agy) = 7
Z( 201+ d2n) Z 2n(2n — 1)
n=1 n=1

is convergent.

Example 5.28 Check in each of the cases below if the given series is conditionally convergent, abso-
lutely convergent or divergent.

ni(l)” (1+5).

i cos nm i (n!)?
i | M
— N — (2n)!
1) Necessary condition for convergence. It follows from
1 1
‘(_1)n<1+ﬁ)‘:1+ﬁ_)17é0 for n — oo,

0 AW
that the necessary condition for convergence is not fulfilled, so >~ (—=1)" (1 + —2) is (coarsely)
n

divergent.

2) Now cosnm = (—1)", so the series can more conveniently also be written > -, (—1)"/y/n.
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a) Necessary condition for convergence? This follows from

-1 1
’(\/T_z =—\/ﬁ—>0 for n — oo.
1
b) Absolute convergence? Since > >, 7_ is divergent, the series is not absolutely convergent.
n

1
¢) Conditional convergence? The series is alternating and — — 0 is decreasing for n — oo. It
n

therefore follows from Leibniz’s criterion that the series is convergent. As it is not absolutely
convergent, it is conditionally convergent.

(n})?

3) Clearly, a,, = W > 0,80 Yo" an = > o, |ay|, and the series is either absolutely convergent

or divergent.

We get from the criterion of quotients that

ans1 ((n+1)1)2 (2n)! (n+1)? 1 n+1 1 1
== . = = — . — —
o @n+2)! ()2 T @n+2)@nt+l) 4 ntl 4

for n — oo. It therefore follows that the series is convergent, thus absolutely convergent.
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Calculus 3c-2 Conditional covergence and Leibniz’s criterion

Example 5.29 Check if each of the series

3 i . n c- n+1 2
(1) ;sm (” g) n2+3n+2’ og (2) HZ::I(_D In (14_?)

is divergent, conditionally convergent or absolutely convergent.

We shall use the flow diagram from Calculus 3b, i.e. first check if a,, — 0. If “yes”, then continue with
“absolute convergence”. Note that (2) invites to an early application of Leibniz’s criterion, which is
here a waste of time.

1) Since sin (n %) =1 for n =3+ 12p, p € Ny, we have sin (n %) = 1. From

2
2 2 1+ =
213++2: Ty 140 forn—oo,
n n 14342

follows that
asyizp — 1 for p — 0.
The necessary condition for convergence is not fulfilled, hence the series is coarsely divergent.
2) Using a well-known graph (cf. the figure) we have the estimate
O<ln(l+z) <=z for every z > 0.

[Alternatively, In(1 + z) = x + xe(x), etc.]

0.5+

Then for z = —,
n

2 2 2
O<|an|:‘(—1)"+11n<1+—2>‘:ln<1+—2) <— —0 forn— oco.
n n n
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Calculus 3c-2 Conditional covergence and Leibniz’s criterion

Thus, (a) the necessary condition for convergence is fulfilled, and
oo o0
2 2 72
(b) Z|%\<Z$=2'€=§
n=1 n=1
is convergent, hence the series is absolutely convergent.

Remark 5.5 Leibniz’s criterion it not at all mentioned in this proof. ¢

Example 5.30 Check in each of the following cases if the series is conditionally convergent, absolutely
convergent or divergent.

IS ENC) SIS

1) The faculty function occurs, hence the criterion of quotients is the most natural criterion to

apply. All terms are positive, the the series is either absolutely convergent or divergent. It follows
by the criterion of quotients from

any1 2" (n+1)! (2n)! 2(n+1) 1 0<1
— . — = —
an (2n+2)! 2nn/! (2n+2)(2n+1)  2n+1

for n — oo that the series is absolutely convergent.

1
2) From 0 < — < 1 follows that
e

> = /1\ 1 1
_1\Pe—P| — ) ===
E|( 1)Pe \—g (e)_ T <00,
p=38 p=8

so the series is absolutely convergent.

Remark 5.6 The series is a quotient series, so we can find its exact sum,

e’ o] 1 P 1 8 1 e 677
_1)Pe P — ) =) = 8 = .
=8( e Z< e) < e) 1_(_}) © TeF1 e+t

P p=8
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Calculus 3c-2 Conditional covergence and Leibniz’s criterion

Example 5.31 Check in each of the following cases if the series is absolutely convergent, conditionally
convergent or divergent,

= e = n!)3
DIl W

1) We have by the laws of magnitudes

— — 0 for n — oo,
n2

hence the necessary condition for convergence is not satisfied, and Y -, (—1)"e™/n? is (coarsely)
divergent.

(n))?
(3n)!

a1 {(+D1E @n)! (DN (3n)!
)

2) If we put a,, =

> 0, then

an, {3(n+1)} (n!)3 n! 3n+3)!
B (n+1)3 B 1
 (3n+3)(3n+2)(3n+1) N 5 2
n+1 n+1
1 1
3= o <1 for n — oo.

Then by the criterion of quotients,

n=1

is absolutely convergent.

Example 5.32 Check in each of the following cases, if the series is absolutely convergent, condition-
ally convergent or divergent.

I S

n=1 n=1

Inn
1) The series Y 7 (—1)" — is not absolutely convergent. It is conditionally convergent.
n

a) Applying e.g. the criterion of comparison we get

i ZIHZil:oo,
n=1 n=2n

which shows that we do not have absolute convergence.

Inn
1)y ——
()=
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Inx
b) Due to the different magnitudes, the function — tends towards mod 0 for  — oo, and
T

% - —;*?:T<O fOI‘fE>€,

d <lnx) 1 Inz 1—Inz

Inn
thus for n > 3 we see that —— tends decreasingly towards 0. Furthermore, the series is alter-

n
nating, so it follows from Leibniz’s criterion that the series is convergent, hence conditionally
convergent.

2) This series is absolutely convergent. In fact, if we put

C(=rEa)| 4 (2n)!
in = ‘ Gl |~ @y 7Y
then
any1 A" (20 +2)! Bt 42n+2)(2n +1)
an (Bn+3)  4n-(2n)!  (Bn+3)(Bn+2)(3n+1)
= § . —2n +1 — 0 for n —
T 3 Bn+2)Batl) ornTee

We conclude from the criterion of quotients that the series is absolutely convergent.
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Calculus 3c-2 Conditional covergence and Leibniz’s criterion

Example 5.33 1) Prove that
Vn+1l—+yn—0 forn — oo.
Hint: Apply the formula

a? —b?
a+b’

a—b=

2) Check if the series

S (1 VAT T = Vi) = (VA= )= (VB V) (1) (VAT T = i)+

18 absolutely convergent, conditionally convergent or divergent.

3) When we remove all the parentheses of the series in (2), we get the series

V2-1-V34+V24+Vi—V3—-...

Is this series convergent or divergent?

1) It follows from

WATI2- (/e 1
VitV = e e S i

that v/n + 1 — /n — 0 decreasingly for n — oo.

Alternatively,

VAFi-ym

Il
—N—
=
+
S|
|
—_
——
B
—N
—
+

| =
S
_|_
S
™
N
S
N———
|
—_
——

2) If we put a,, =vn+1—/n=————, then
n

a) a, — 0 for n — oo, thus the series is not coarsely divergent.

1
2\/_3(12”12\/—

¢) We see that > > (=1)" " '(v/n+1—yn)=>.",(-1)"a, is alternating, and that a, — 0
is decreasing, so it follows from Leibniz’s criterion that the series is convergent. Since it is
not absolutely convergent, it must be conditionally convergent.

b) a, ~ is divergent, hence the series is not absolutely convergent.

d) When we remove all the parentheses we see that |b,| > 1 for every n, and the necessary
condition for convergence is not satisfied. The series is coarsely divergent.
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Example 5.34 1) Prove that the series

i I ! +
24 T 142 1424 +n ’

s convergent with the sum 2.
1
(Hint: One may without proof use that 14+2+ -+ +n = 5n(n+1), neN).

2) Prove that the series

o0

=1+-—
;1*2+~“+(*1)”*1n + 1- 2+ - 1—2+...+(71)n71n+

s conditionally convergent with sum 0.

Hint: One may use without proof that

1= 244 (—1)"ln =

DO | =

1
(—1)n 1 {n t3 (1+ (1)”1)} , neN.
1) When we consider the sectional sequence sy, we get by a decomposition,

al AR /1 1

z::l +nzzn(n+1):2;(ﬁ_n+l>
N
IR

1
Z—: 7—*>2 for N — oo,
—n +1

and the series is according to the definition (absolutely) convergent with the sum
= 1
_— = 2.
2 14+24-+n
n=1

2) We first apply the hint,

o0 oo

> : Y e
l=24 (=) a4 {1+ (-1) 1)
2(—1)n1
n+ 3 {1+ (=)'}
of equivalence that the series is not absolutely convergent.

2
b) The series is alternating, and T is weakly decreasing towards 0. Hence the
n+5{1+ (-1)""1}
series is convergent by Leibniz’s criterium, and therefore conditionally convergent according

to (a).

2
a) Now, —, and > — is divergent. Thus it follows from the criterion
n n
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Sum. We see

1 2

= 1 2 1 ] = 1 —)0
SRR Gt B (=)

an

weakly decreasing for n — oo.

Then calculate the sectional subsequence ssp,

2N

> 1 2(—1 n—1
SaN = Zl(—l)” Ay = Zl p— %{(1 Jr)(l)nl}
B N 2(_1)2;7—1—1 2(_1)21)—1
- X (@ @1} g %{14—(—1)21)—1}}
Yoo 2
= pl(%_%>20—>0 fOrN—>oo,

We can now continue in different ways:

a) The series is convergent, thus sy — s for N — oco. The subsequence (sax) converges both
towards s and towards 0, and its limit is unique. Hence s = 0, and the sum is 0.
1

N——H, we have

b) Since sont1 = Gont1 + Son = Qon41 =

2
n+1

0 for n lige,
Sn = for n ulige,

and it follows that s,, — 0 for n — oo.

As a conclusion we finally get

oo

1
21_24_...4_(_1)”—1”70’

n=1

where the convergence is conditional.
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6 Series of functions; uniform convergence

Example 6.1 Let f: R — R be a C'-function, for which f(0) = 0. Prove that if the series > - | an
(real terms) is absolutely convergent, then the series Y-, f(an) is also absolutely convergent.

We shall apply Taylor’s formula from e.g. Calculus 1b.
1) We assume that the series Y | a,, is absolutely convergent. Then especially, |a,| — 0 for n — co.

2) Since f € C*(R) we get by Taylor’s formula that

f'(0)
1!

f(x) = £(0) + z + ze(z) = f(0) - & + we ().

3) Since (ay) is bounded, we can find constants C' and N, such that
le(an)| < C for n > N.

Without loss of generality we may assume that N = 1.

o
B By 2020, wind could provide one-tenth of our planet’s
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4) Since
flan) = f/(()) “Op + ane(an)

where

[f(an)] < [f(0)] - lan| + lan| - C = (|f/(0)| + C) - |anl,

and since > ° | |a,| is convergent, and |f'(0)| + C < oo, we get by applying the criterion of
comparison that Y 7 |f(a,)| is convergent, so > >~ f(a,) is absolutely convergent.
Remark 6.1 Tt is here essential that f(0) = 0 and that f/(0) is finite. Consider for instance the func-
1
tion f(z) = \/|x| which is not differentiable at 0 (vertical half tangent), while 777 | — is convergent.
n
In this case we see that

> 1 <1
;f<ﬁ>—;ﬁ

is divergent.

Example 6.2 Find all values © € R, for which the series

o0

Z(l —x)z"

n=0
is convergent, and find for each of these values the sum function of the series.

Then check if the series is uniformly convergent in

(1) 11,1 2) H%[

1) When |z| < 1, the series is the usual quotient series of quotient 2, hence the series is here convergent
with the sum function

> _l—m

f(x):Z(l—x)m"—lile forz €] —1,1].

n=0

2) When r « = 1, all terms of the series are 0, thus f(1) = 0.

3) When z = —1 or |z| > 1, we see that |(1 — 2)z"| does not converge towards 0 for n — oo, and the
series is coarsely divergent.

Conclusion. The series is convergent for « €] — 1, 1] with the sum function

[ 1 forxe]-1,1]
i ){ 0 forz=1.

Download free books at BookBooN.com

82



Calculus 3c-2 Series of functions; uniform convergence

0.8

0.6

0.4+

0.2

;
2 -1

1) Every term (1 — 2)a™ is continuous in | — 1, 1], while the sum function f(z) is not continuous at

1. Hence, the convergence cannot be uniform in this interval.

11
2) When z € ] —33 {, we get the estimate

N N N 1
_ n _ n n+1 _ N+1
() =11 = 30 —aga® 1= 3t = 3wt 1) = el < g

11
which tends towards 0 for N — oo independently of x € ] 35 [, hence the convergence is uniform
. 11
in|—=,=|.
22

Alternatively we have the convergent majoring series

> B e | 11

11
We conclude again that the series is uniformly convergent i } 35 [
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Example 6.3 Check if the series

Z(l —x)z"
n=0

is uniformly convergent in the interval I = [0, 1].

This is a tricky example, because the sum function f(x) = 1 is continuous in [0, 1[, so one is misled
to think that the convergence is uniform. This is not true!

When z € [0, 1], we get as in Example 6.2 that

s (@) = 1] = |2V
By choosing
1

N = Wﬁ € [07 1[;

it follows that
1
[sn(zn) — 1] = B for every N € N,

and the convergence is not uniform.
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Example 6.4 1) Prove that the series
6) > A3
n=0 (1 T )n
is convergent for every x € R, and find its sum function.

2) Then prove that (5) is not uniformly convergent in the interval R.

3) Prove also that (5) is uniformly convergent in any interval of the form [a,b], where 0 < a < b.

4) Find
o0 2 $2
; / T

1) If =0, then f(0) = 0.
If z # 0, then the series is a quotient series of quotient 1/(1 + z?) €]0, 1] (i.e. convergent), and its

sum is
o 2 2 2 2
1
T _ T :x(—|—x):1+x2.
Z(l_’_xZ)n 1 12
n=0 -
1+ 22

The sum function is

= x? 1+a22 forax#0
f(ac)—z (14 22)n _{ 0 for z = 0.

n=0

0.5+

1758 06 04 020" 0 c.‘4xofs 08 1

2) Every term z2/(1 + %)™ is continuous, while the sum function is not continuous at z = 0. It
follows that the convergence cannot be uniform in any interval, which contains 0, and in particular
not in R.

Download free books at BookBooN.com

85



Calculus 3c-2

Series of functions; uniform convergence

3) Finally, we can prove the uniform convergence in [a, b], where 0 < a < b, in two ways:

a) directly by the definition (estimate such that = disappears),

b) find a convergent majoring series.
a) We shall prove that
lsn(z) — (1+2?) <ay — 0 for N — 0o, =z € [a,b],

where ay does not depend on z. We get

lsn(z) — (1+22)| = i — (1422 :21”2*1 1+ 22)
— (1+2?) = (L+a?)n
N N
- Z(1+x2)" T z_% 1+w2 — (427
i N—-1 - N

2 — 1 1 2

1
(1+22)N = 1+ a2 — 0 for N — oo independent of z > a,

and we have proved that the series is uniformly convergence, even in the half infinite intervals
[a, 00], where a > 0.

b) Alternatively we get for 0 < a <z < b < oo the following estimate

= = " b (14a?)
; (1—|—x g 1—|—a2 22(14—(12) T

Notice that the numerator is estimated from above, while the denominator is estimated from
below by some smaller positive number, and also that the quotient 1/(1+ a?) €]0, 1], hence the
quotient series is convergent with the given sum. Since we have obtained a convergent majoring
series we conclude that the original series is uniformly convergent.

4) According to 3) the convergence is uniform in the closed and bounded (i.e. compact) interval [1, 2].

Then we can interchange summation and integration, so we get by 1)
00 .2 22 2 ,
nz_o/l 4(1+x2)ndx / Z 1+:c2 m:/l(l—i-a:)da:
- [Hx } EPR.L
3], 3

It is possible, though very difficult directly to calculate the sum of the integrals. We shall leave
out these tedious details.

3
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Example 6.5 Prove that the series
o0 o0

1
D LD P S

n=1 n=1

are uniformly convergent in the interval R.

We use in both cases the criterion of majoring series.

1) Since |cosnz| < 1, each term of the series can be estimated from above by

cosnT 1
‘ 7 ‘7—4, for alle z € R.
n n
Th S o ) d o COSTT | ‘ ;
enery >, aisa convergent magjoring series (x does not occur), so Y~ | — s uniformly
convergent in R.
o 1 ot .
Remark 6.2 Here )~ | — = g 18 one of the standard series. ¢
n
2) Each term of the series is estimated from above by decreasing the denominator,
1 1 1
= —, da 22 > 0.
n? + 2 n? 4+ a2 = n? -
N o 1 t majori ] d h o i ' [
ow, » o7 3 is & convergent majoring seris (« does not occur), hence y_ > | o is uniformly

convergent i R.

1 2
Remark 6.3 Here ) 77| — = % is one of the standard series. ¢
n

Example 6.6 Prove that the series
o n

>

n=1

is uniformly convergent for |x| <1, and divergent for |z| > 1.

1) Since

:Z:,n
W S W for |Z‘| S 1,

and 2 > 1, the series > o2 | 1/n%/2 is a convergent majoring series, thus "o, 2™ /n%/? is uniformly
convergent for |z| < 1.
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2) If |x| > 1, then it follows by the magnitudes that

xn

n3/2

_ ="

= — 00 for n — oo.
n3/2

The necessary condition for convergence is not fulfilled, so the series is coarsely divergent for
|z > 1.

Example 6.7 Prove that the series

e 2

Z 2cosnx + 3sinn“x
ny/n

is uniformly convergent in the interval R.

n=1

Each term of the series is estimated by

.9
‘2608n$+351nn$ <2+3 5 for alle € R,

ny/n ~ nyn nd/2’
so a majoring series (in which x does not occur) is

o0

5
2

n=1
3 . L
I\TOW7 o = 5 > 1, so the majoring series 18 COHVGI'geIlt.

We conclude that the series is uniformly convergent in R.

Example 6.8 Prove that the series
e onw
> T

n=1

is uniformly convergent in the interval | — oo, k|, where k is any number in R .
We shall find a convergent majoring series. It follows from
onT 2nk _ (Qk)n

that

n=1 n=1

Thus we have constructed a convergent majoring series, and the claim is proved.

Download free books at BookBooN.com

88



Please click the advert

Calculus 3c-2 Series of functions; uniform convergence

Remark 6.4 We see that we have pointwisely everywhere,
o0 2 .
Z—'—epr) 1, r € R,

and this convergence is even uniform over each interval of the type = €] — oo, k.

Example 6.9 Prove that the series

— 1
7;2 n(lnn)®

is uniformly convergent in the interval [k, oo, where k is any real number bigger than 1. Then prove
that the sum function tends towards oo for x tending towards 1 from the right.

When n > 3, then Inn > 1, and thus n(Inn)® > n(lnn)* for # > k and n > 3. This gives us the
estimate

o0

> k.
0<Z lnn lnn for x > k

n=3

" M
W\
77

\ [
27777/ o' a-
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Now, ———— is decreasing in n for n > 3 and k£ > 1. Since

n(lnn)k

/°° d 1 I ! 1
5 tmt)* | k-1 (nt)k-1], k-1 (In3)*k-1’

1
we get by the integral criterion that fo:g ﬂ is a convergent majoring series, so the series
n(lnn
1
is uniformly convergent, because nothing is changed by adding the function W, even if it tends
n xr
towards oco for x — oo.
1
Assume that = > 1. Since ﬁ is decreasing in n for n > 3, we get by the integral criterion
n(lnn)*
the following estimate from below,
— 1 1 — 1 1 > dt
7 = o ow > + /
7;2 n(lnn)® 2(In2)> ; n(lnn)® — 2(In2)* 3 t(lnt)®
1 (Int)t==7> 1 1 1
= —|— = + . — -
2(In2)* -2 |, 2(In2)* 2 —1 (In3)*—!

Then the claim follows from the fact that the lower estimate clearly tends towards oo for x — 1+.

Example 6.10 Prove that the series

co .
Z S NIT
7’L2

n=1

is uniformly convergent for every x € R.

Also prove that

[ (E5) =St

n=1

Each term in the series is estimated from above by

sinnz 1
— | < for every = € R.
n n
w 1 7. . . . o
Then )~ 2= is a convergent majoring series (a standard series), so the series itself is uniformly

convergent in R.

Since the convergence is uniform, and [0, 7] is a bounded interval, we may interchange summation and
integration,

/0” (Zsmnx> Z /Smmydx_an—Q[—%cosnx] :Zn3{1_ Y

n=1 n=1

As

n_ | 2 forn odd,
1= (=" = { 0 for n even,
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we shall only sum over odd indices, thus

T sin nx > >
E dr = 1—(—
/O (n—l n ) o nzl { ; 2n — 1
Remark 6.5 The exact value of > > !
. X A% e
" =l (20— 1)

approximating values.

is yet not known; but one may of course find

Si.

Swedish Institute

as and global trends.
jur career goals may be, studying in Sweden will give you valuable
skxlls and a competitive advantage for your future. www.studyinsweden.se

91

rceptive team players. Swedish
dld thinking culture where you’re

Download free books at BookBooN.com


http://bookboon.com/count/pdf/345890/91

Calculus 3c-2 Series of functions; uniform convergence

Example 6.11 1) Prove that the series
[ee]
(6) Z sinz - (cos x)*"
n=0
is pointwise convergent for every x € [0, 7|, and find its sum for every x € [0, 7).
2) Check if the series (6) is uniformly convergent in [0, 7.
, . . 7T 27
3) Prove that the series (6) is uniformly convergent in 33|
1) When z €10, 7[, the quotient fulfils 0 < cos? z < 1, so the quotient series is pointwise convergent i
10, 7| and its sum function is

sinx 1

o0 o0
Z sinz - (cosz)?™ =sinz z:{cos2 o}t = =
n=0

l—cos2x sinz
n=0

When either = 0 or z = 7, every term is 0, and the sum is 0.

As a conclusion we get pointwise convergence in [0, 7] and the sum function is here given by

0 forx=0o0rxz=m.

f(x){ 1/sinz  for x €10, |,

\\\ B /,

05 1152253

X

2) Since every term of the series is a continuous function, and the sum function is not continuous at
the end points, we conclude that the series cannot be uniformly convergent in the interval [0, 7].
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2 1
3) Ifx e [g, %}, then | cosz| < 3" Hence we get the estimate
oo o 2n 00 n
1 1 1 4
: 2n _ — —
Ypsma s\ <30 (5) =2 (5) = 5

. .. . . . T 2w . .
The series has the convergent majoring series 47" in the interval {g, ?}, so it must be uni-

formly convergent in this interval.

Example 6.12 Prove that the series

> 1
fm=;mjﬁ

is uniformly convergent for x > 0, and then calculate

AV@“:A{

We assume that x > 0. Every term is estimated from above by decreasing the denominator,

oo

1
Zm}dx

n=1

1 1 1
0< < = — fi > 0.
T2l S TR or every x >

1 72

Now, S>> — is a convergent majoring series (a standard series). Hence, it follows that the

nt g =
series is uniformly convergent for > 0.

Since the series is uniformly convergent in the bounded interval [0, 1], we may interchange summation
and integration. Hereby we get

/Olf(a:)dx _ Al{im}dmzifﬁ%
11

n=1
o] 1 00
n—1|: n+wx),_g nz::l n n+1l
Y11
— i - telescoping series
Ngnoo; <n - 1) (telescoping series)
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Example 6.13 1) Prove that the series

n 1

Z n2+x2

1s convergent for every x € R.

2) Ezplain why we have the following inequalities for every x € R and every n € N,

2z <2®+1< 2% +n.

3) Define a function f by

n 1

:Z —l—xQ’ reR.

Prove that f is differentiable and that

(o] n

/x)2z(n(2+7x2)2’ z €R.

(Hint: Apply the result of (2)).

We get by a crude estimate that

=01
S

o0 ( —

Z n2+x2

n=1

and we see that the series has a convergent majoring series, so it is even uniformly convergent, and

its sum function f(z) is continuous.

Now, 22 —2|z|+1 = (Jz| — 1)%2 > 0, so we obtain the left hand inequality by a rearrangement. The

right hand inequality is trivial.

Formally we get by termwise differentiation,

o0 n

However, the following estimate

oo

n2+x2

2z 1 =
_Zn2+x2'n2+x2 Szl
n=1 n=1

shows that the formally differentiated series has a convergent majoring series, so it is uniformly

convergent. Hence, f is differentiable with the derivative

n

, > —1)"x
x)zZZﬁ.

94

Download free books at BookBooN.com



Calculus 3c-2 Series of functions; uniform convergence

Example 6.14 1) Prove that the series

(o] (oo}
_ (_l)nfl _ 1 1 (_1)77,71
;f"(x)_; zr+n  l+z x—|—2+ + T+n +

is convergent for every x € [0, 00|

2) Let [ be the sum function of the series of (1), thus

M 1@ =Y 0= el
n=1 n=1

Prove that f is differentiable and that

f/(x> = Zf’rll(x)7 T € [0700[.

n=1

1
1) If <0, then |f,(x)] = o 0 decreasingly. Now, f,(z) = (=1)""!|f.(z)|, so the series is
r+n

alternating, and therefore convergent according to Leibniz’s criterion. Hence, the series of f(x)
is pointwise convergent for every z € [0, oo].

2) The formally termwise differentiated series is

(z +n)?*’

Z =0 x € [0, 00[.
n=1

Clearly, this series has the convergent majoring series so it is uniformly convergent. The

=,
n
series of f(x) is pointwise convergent, and the termwise differentiated series is uniformly convergent,

so it follows that f(x) is differentiable with the derivative

f@=2ﬁm=2%ﬂi x € [0,00]
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